X-Ray Diffraction Table |
See Help on X-Ray Diffraction.
Powder X-ray Diffraction (XRD) is one of the primary techniques used by mineralogists and solid state chemists to examine the physico-chemical make-up of unknown materials. This data is represented in a collection of single-phase X-ray powder diffraction patterns for the three most intense D values in the form of tables of interplanar spacings (D), relative intensities (I/Io), mineral name and chemical formulae
The XRD technique takes a sample of the material and places a powdered sample in a holder, then the sample is illuminated with x-rays of a fixed wave-length and the intensity of the reflected radiation is recorded using a goniometer. This data is then analyzed for the reflection angle to calculate the inter-atomic spacing (D value in Angstrom units - 10-8 cm). The intensity(I) is measured to discriminate (using I ratios) the various D spacings and the results are compared to this table to identify possible matches. Note: 2 theta (Θ) angle calculated from the Bragg Equation, 2 Θ = 2(arcsin(n λ/(2d)) where n=1
For more information about this technique, see X-Ray Analysis of a Solid or take an internet course at Birkbeck College On-line Courses. Many thanks to Frederic Biret for these data.
[ 1 ]
D1 Å (2θ) |
I1 %) |
D2 Å (2θ) |
I2 (%) |
D3 Å (2θ) |
I3 (%) |
Mineral | Formula |
12.560(7.03) | 200 | 6.980(12.67) | 160 | 9.560(9.24) | 140 | Wakabayashilite | (As,Sb)6As4S14 |
12.560(7.03) | 200 | 6.280(14.09) | 120 | 6.700(13.20) | 40 | Sincosite | Ca(V++++O)2(PO4)2·5(H2O) |
12.580(7.02) | 200 | 3.838(23.16) | 120 | 6.276(14.10) | 100 | Kiddcreekite | Cu6SnWS8 |
12.640(6.99) | 200 | 4.956(17.88) | 160 | 5.488(16.14) | 160 | Sussexite | MnBO2(OH) |
12.640(6.99) | 200 | 6.560(13.49) | 150 | 5.856(15.12) | 130 | Krohnkite | Na2Cu(SO4)2·2(H2O) |
12.700(6.95) | 200 | 6.480(13.65) | 120 | 6.334(13.97) | 80 | Gaultite | Na4Zn2Si7O18·5(H2O) |
12.778(6.91) | 200 | 6.386(13.86) | 90 | 5.758(15.38) | 40 | Ulrichite | CaCu(UO2)(PO4)2·4(H2O) |
12.780(6.91) | 200 | 7.440(11.89) | 80 | 9.160(9.65) | 40 | Ewaldite | (Ba,Sr)(Ca,Na,Y,Ce)(CO3)2 |
12.790(6.91) | 200 | 6.868(12.88) | 160 | 25.606(3.45) | 100 | Graemite | CuTeO3·(H2O) |
12.800(6.90) | 200 | 9.440(9.36) | 100 | 12.200(7.24) | 100 | Aksaite | MgB6O7(OH)6·2(H2O) |
12.840(6.88) | 200 | 14.560(6.07) | 200 | 8.000(11.05) | 160 | Camgasite | CaMg(AsO4)(OH)·5(H2O) |
12.856(6.87) | 200 | 6.434(13.75) | 140 | 5.200(17.04) | 120 | Jensenite | Cu++3Te++++++O6·2(H2O) |
12.890(6.85) | 200 | 18.004(4.90) | 60 | 16.428(5.37) | 52 | Simonellite | C19H24 |
12.940(6.83) | 200 | 16.620(5.31) | 200 | 9.940(8.89) | 50 | Meyerhofferite | Ca2B6O6(OH)10·2(H2O) |
12.960(6.81) | 200 | 6.084(14.55) | 160 | 5.644(15.69) | 140 | Fingerite | Cu11(VO4)6O2 |
12.960(6.81) | 200 | 16.980(5.20) | 160 | 6.108(14.49) | 120 | Kamotoite-(Y) | (Y,Nd,Gd)2U++++++4(CO3)3O12·14.5(H2O) |
12.960(6.81) | 200 | 6.480(13.65) | 140 | 6.180(14.32) | 120 | Fluellite | Al2(PO4)F2(OH)·7(H2O) |
13.000(6.79) | 200 | 8.720(10.14) | 160 | 12.600(7.01) | 100 | Macdonaldite | BaCa4[Si16O36(OH)2]·10(H2O) |
13.000(6.79) | 200 | 7.720(11.45) | 180 | 5.220(16.97) | 140 | Nesquehonite | Mg(HCO3)(OH)·2(H2O) |
13.040(6.77) | 200 | 6.510(13.59) | 80 | 8.100(10.91) | 80 | Wooldridgeite | Na2CaCu++2(P2O7)2·10(H2O) |
13.040(6.77) | 200 | 12.060(7.32) | 160 | 6.010(14.73) | 100 | Liroconite | Cu2Al(AsO4)(OH)4·4(H2O) |
13.040(6.77) | 200 | 5.060(17.51) | 160 | 5.800(15.26) | 120 | Murunskite | K2Cu3FeS4 |
13.050(6.77) | 200 | 7.078(12.50) | 160 | 8.774(10.07) | 120 | Delrioite | CaSrV2O6(OH)2·3(H2O) |
13.060(6.76) | 200 | 19.860(4.45) | 190 | 8.480(10.42) | 110 | Stercorite | H(NH4)Na(PO4)·4(H2O) |
[ 1 ]