Mineralogy Database

X-Ray Diffraction Table

Search Webmineral :
  

Minerals Arranged by X-Ray Powder Diffraction

See Help on X-Ray Diffraction.

Powder X-ray Diffraction (XRD) is one of the primary techniques used by mineralogists and solid state chemists to examine the physico-chemical make-up of unknown materials. This data is represented in a collection of single-phase X-ray powder diffraction patterns for the three most intense D values in the form of tables of interplanar spacings (D), relative intensities (I/Io), mineral name and chemical formulae

The XRD technique takes a sample of the material and places a powdered sample in a holder, then the sample is illuminated with x-rays of a fixed wave-length and the intensity of the reflected radiation is recorded using a goniometer. This data is then analyzed for the reflection angle to calculate the inter-atomic spacing (D value in Angstrom units - 10-8 cm). The intensity(I) is measured to discriminate (using I ratios) the various D spacings and the results are compared to this table to identify possible matches. Note: 2 theta (Θ) angle calculated from the Bragg Equation, 2 Θ = 2(arcsin(n λ/(2d)) where n=1

For more information about this technique, see X-Ray Analysis of a Solid or take an internet course at Birkbeck College On-line Courses.  Many thanks to Frederic Biret for these data.

Optional Search Query - To Reset, Click Here
Selected X-Ray λ
Change X-Ray λ
D1 Å
D2 Å
D3 Å
Tolerance %
Elements

[ 1 ]

Found 20 Records, Sorted by D1 using 1.54056 - CuKa1 for 2θ WHERE (d1 > 12.5146 AND d1 < 13.0254)
D1
Å (2θ)
I1
%)
D2
Å (2θ)
I2
(%)
D3
Å (2θ)
I3
(%)
Mineral Formula
12.520(7.05) 200 6.580(13.45) 180 4.940(17.94) 160 Lepidocrocite FeO(OH)
12.560(7.03) 200 6.980(12.67) 160 9.560(9.24) 140 Wakabayashilite (As,Sb)6As4S14
12.560(7.03) 200 6.280(14.09) 120 6.700(13.20) 40 Sincosite Ca(V++++O)2(PO4)2·5(H2O)
12.580(7.02) 200 3.838(23.16) 120 6.276(14.10) 100 Kiddcreekite Cu6SnWS8
12.640(6.99) 200 6.560(13.49) 150 5.856(15.12) 130 Krohnkite Na2Cu(SO4)2·2(H2O)
12.640(6.99) 200 4.956(17.88) 160 5.488(16.14) 160 Sussexite MnBO2(OH)
12.700(6.95) 200 6.480(13.65) 120 6.334(13.97) 80 Gaultite Na4Zn2Si7O18·5(H2O)
12.778(6.91) 200 6.386(13.86) 90 5.758(15.38) 40 Ulrichite CaCu(UO2)(PO4)2·4(H2O)
12.780(6.91) 200 7.440(11.89) 80 9.160(9.65) 40 Ewaldite (Ba,Sr)(Ca,Na,Y,Ce)(CO3)2
12.790(6.91) 200 6.868(12.88) 160 25.606(3.45) 100 Graemite CuTeO3·(H2O)
12.800(6.90) 200 9.440(9.36) 100 12.200(7.24) 100 Aksaite MgB6O7(OH)6·2(H2O)
12.840(6.88) 200 14.560(6.07) 200 8.000(11.05) 160 Camgasite CaMg(AsO4)(OH)·5(H2O)
12.856(6.87) 200 6.434(13.75) 140 5.200(17.04) 120 Jensenite Cu++3Te++++++O6·2(H2O)
12.890(6.85) 200 18.004(4.90) 60 16.428(5.37) 52 Simonellite C19H24
12.940(6.83) 200 16.620(5.31) 200 9.940(8.89) 50 Meyerhofferite Ca2B6O6(OH)10·2(H2O)
12.960(6.81) 200 6.480(13.65) 140 6.180(14.32) 120 Fluellite Al2(PO4)F2(OH)·7(H2O)
12.960(6.81) 200 16.980(5.20) 160 6.108(14.49) 120 Kamotoite-(Y) (Y,Nd,Gd)2U++++++4(CO3)3O12·14.5(H2O)
12.960(6.81) 200 6.084(14.55) 160 5.644(15.69) 140 Fingerite Cu11(VO4)6O2
13.000(6.79) 200 7.720(11.45) 180 5.220(16.97) 140 Nesquehonite Mg(HCO3)(OH)·2(H2O)
13.000(6.79) 200 8.720(10.14) 160 12.600(7.01) 100 Macdonaldite BaCa4[Si16O36(OH)2]·10(H2O)

[ 1 ]