X-Ray Diffraction Table |
See Help on X-Ray Diffraction.
Powder X-ray Diffraction (XRD) is one of the primary techniques used by mineralogists and solid state chemists to examine the physico-chemical make-up of unknown materials. This data is represented in a collection of single-phase X-ray powder diffraction patterns for the three most intense D values in the form of tables of interplanar spacings (D), relative intensities (I/Io), mineral name and chemical formulae
The XRD technique takes a sample of the material and places a powdered sample in a holder, then the sample is illuminated with x-rays of a fixed wave-length and the intensity of the reflected radiation is recorded using a goniometer. This data is then analyzed for the reflection angle to calculate the inter-atomic spacing (D value in Angstrom units - 10-8 cm). The intensity(I) is measured to discriminate (using I ratios) the various D spacings and the results are compared to this table to identify possible matches. Note: 2 theta (Θ) angle calculated from the Bragg Equation, 2 Θ = 2(arcsin(n λ/(2d)) where n=1
For more information about this technique, see X-Ray Analysis of a Solid or take an internet course at Birkbeck College On-line Courses. Many thanks to Frederic Biret for these data.
[ 1 ]
D1 Å (2θ) |
I1 %) |
D2 Å (2θ) |
I2 (%) |
D3 Å (2θ) |
I3 (%) |
Mineral | Formula |
12.380(7.13) | 200 | 5.380(16.46) | 140 | 9.120(9.69) | 120 | Vyacheslavite | U++++(PO4)(OH)·2.5(H2O) |
12.400(7.12) | 200 | 4.404(20.15) | 160 | 5.314(16.67) | 150 | Szaibelyite | MgBO2(OH) |
12.400(7.12) | 200 | 20.600(4.29) | 180 | 14.920(5.92) | 160 | Paulkerrite | K(Mg,Mn)2(Fe+++,Al)2Ti(PO4)4(OH)3·15(H2O) |
12.414(7.11) | 200 | 7.788(11.35) | 190 | 6.188(14.30) | 130 | Howlite | Ca2B5SiO9(OH)5 |
12.416(7.11) | 200 | 4.826(18.37) | 180 | 5.980(14.80) | 180 | Grandviewite | Cu3Al9(SO4)2(OH)29 |
12.430(7.11) | 200 | 14.440(6.12) | 200 | 6.208(14.26) | 140 | Kaliborite | KHMg2B12O16(OH)10·4(H2O) |
12.460(7.09) | 200 | 6.300(14.05) | 180 | 20.800(4.24) | 180 | Matveevite | KTiMn2Fe+++2(PO4)4(OH)3·15(H2O) |
12.460(7.09) | 200 | 6.280(14.09) | 160 | 7.920(11.16) | 140 | Curite | Pb3+x(H2O)2[(UO2)4+x(OH)3-x]2, x~0.5 |
12.482(7.08) | 200 | 14.172(6.23) | 100 | 7.060(12.53) | 80 | Decrespignyite-(Y) | (Y,REE)4Cu(CO3)4Cl(OH)5·2(H2O) |
12.500(7.07) | 200 | 13.000(6.79) | 140 | 6.460(13.70) | 120 | Alumohydrocalcite | CaAl2(CO3)2(OH)4·3(H2O) |
12.520(7.05) | 200 | 6.580(13.45) | 180 | 4.940(17.94) | 160 | Lepidocrocite | FeO(OH) |
12.560(7.03) | 200 | 6.980(12.67) | 160 | 9.560(9.24) | 140 | Wakabayashilite | (As,Sb)6As4S14 |
12.560(7.03) | 200 | 6.280(14.09) | 120 | 6.700(13.20) | 40 | Sincosite | Ca(V++++O)2(PO4)2·5(H2O) |
12.580(7.02) | 200 | 3.838(23.16) | 120 | 6.276(14.10) | 100 | Kiddcreekite | Cu6SnWS8 |
12.640(6.99) | 200 | 4.956(17.88) | 160 | 5.488(16.14) | 160 | Sussexite | MnBO2(OH) |
12.640(6.99) | 200 | 6.560(13.49) | 150 | 5.856(15.12) | 130 | Krohnkite | Na2Cu(SO4)2·2(H2O) |
12.700(6.95) | 200 | 6.480(13.65) | 120 | 6.334(13.97) | 80 | Gaultite | Na4Zn2Si7O18·5(H2O) |
12.778(6.91) | 200 | 6.386(13.86) | 90 | 5.758(15.38) | 40 | Ulrichite | CaCu(UO2)(PO4)2·4(H2O) |
12.780(6.91) | 200 | 7.440(11.89) | 80 | 9.160(9.65) | 40 | Ewaldite | (Ba,Sr)(Ca,Na,Y,Ce)(CO3)2 |
12.790(6.91) | 200 | 6.868(12.88) | 160 | 25.606(3.45) | 100 | Graemite | CuTeO3·(H2O) |
12.800(6.90) | 200 | 9.440(9.36) | 100 | 12.200(7.24) | 100 | Aksaite | MgB6O7(OH)6·2(H2O) |
12.840(6.88) | 200 | 14.560(6.07) | 200 | 8.000(11.05) | 160 | Camgasite | CaMg(AsO4)(OH)·5(H2O) |
12.856(6.87) | 200 | 6.434(13.75) | 140 | 5.200(17.04) | 120 | Jensenite | Cu++3Te++++++O6·2(H2O) |
[ 1 ]