X-Ray Diffraction Table |
See Help on X-Ray Diffraction.
Powder X-ray Diffraction (XRD) is one of the primary techniques used by mineralogists and solid state chemists to examine the physico-chemical make-up of unknown materials. This data is represented in a collection of single-phase X-ray powder diffraction patterns for the three most intense D values in the form of tables of interplanar spacings (D), relative intensities (I/Io), mineral name and chemical formulae
The XRD technique takes a sample of the material and places a powdered sample in a holder, then the sample is illuminated with x-rays of a fixed wave-length and the intensity of the reflected radiation is recorded using a goniometer. This data is then analyzed for the reflection angle to calculate the inter-atomic spacing (D value in Angstrom units - 10-8 cm). The intensity(I) is measured to discriminate (using I ratios) the various D spacings and the results are compared to this table to identify possible matches. Note: 2 theta (Θ) angle calculated from the Bragg Equation, 2 Θ = 2(arcsin(n λ/(2d)) where n=1
For more information about this technique, see X-Ray Analysis of a Solid or take an internet course at Birkbeck College On-line Courses. Many thanks to Frederic Biret for these data.
[ 1 ]
D1 Å (2θ) |
I1 %) |
D2 Å (2θ) |
I2 (%) |
D3 Å (2θ) |
I3 (%) |
Mineral | Formula |
3.016(29.59) | 200 | 6.040(14.65) | 200 | 3.586(24.81) | 140 | Calciotantite | Ca(Ta,Nb)4O11 |
3.022(29.53) | 200 | 5.200(17.04) | 180 | 10.400(8.50) | 170 | Takeuchiite | Mg2Mn+++O2(BO3) |
3.032(29.43) | 200 | 4.326(20.51) | 200 | 6.380(13.87) | 200 | Babefphite | BaBe(PO4)(F,O) |
3.038(29.38) | 200 | 5.200(17.04) | 200 | 9.040(9.78) | 160 | Chromphyllite | (K,Ba)(Cr,Al)2[AlSi3O10](OH,F)2 |
3.040(29.36) | 200 | 9.120(9.69) | 200 | 30.800(2.87) | 200 | Nontronite | Na0.3Fe+++2(Si,Al)4O10(OH)2·n(H2O) |
3.044(29.32) | 200 | 4.820(18.39) | 200 | 6.720(13.16) | 180 | Shirokshinite | K(NaMg2)Si4O10F2 |
3.060(29.16) | 200 | 9.160(9.65) | 200 | 31.600(2.79) | 160 | Hectorite | Na0,3(Mg,Li)3Si4O10(OH)2 |
3.060(29.16) | 5.220(16.97) | 7.820(11.31) | Kurumsakite | (Zn,Ni,Cu)8Al8V2Si5O35·27(H2O) (?) | |||
3.078(28.99) | 200 | 3.608(24.65) | 200 | 5.880(15.05) | 200 | Tazheranite | CaTiZr2O8 |
3.080(28.97) | 200 | 7.180(12.32) | 200 | 8.720(10.14) | 200 | Neotocite | (Mn,Fe++)SiO3·(H2O) (?) |
3.080(28.97) | 200 | 5.160(17.17) | 200 | 5.760(15.37) | 120 | Majorite | Mg3(Fe,Al,Si)2(SiO4)3 |
3.080(28.97) | 200 | 4.700(18.87) | 120 | 5.320(16.65) | 120 | Mcgovernite | Mn9Mg4Zn2As2Si2O17(OH)14 |
3.080(28.97) | 200 | 5.160(17.17) | 200 | 5.760(15.37) | 120 | Pyrope | Mg3Al2(SiO4)3 |
3.080(28.97) | 200 | 5.340(16.59) | 200 | 30.800(2.87) | 200 | Sauconite | Na0,3Zn3(Si,Al)4O10(OH)2·4(H2O) |
3.088(28.89) | 200 | 5.112(17.33) | 200 | 5.984(14.79) | 120 | Glagolevite | NaMg6[Si3AlO10](OH,O)8·H2O |
3.096(28.81) | 200 | 3.626(24.53) | 200 | 5.880(15.05) | 200 | Lewisite | (Ca,Fe++,Na)2(Sb,Ti)2O7 |
3.100(28.77) | 200 | 5.044(17.57) | 200 | 3.610(24.64) | 184 | Sabelliite | Cu2Zn(As,Sb)O4(OH)3 |
3.104(28.74) | 200 | 3.636(24.46) | 200 | 5.900(15.00) | 200 | Uranmicrolite | (U,Ca)2(Ta,Nb)2O6(OH) |
[ 1 ]