X-Ray Diffraction Table |
See Help on X-Ray Diffraction.
Powder X-ray Diffraction (XRD) is one of the primary techniques used by mineralogists and solid state chemists to examine the physico-chemical make-up of unknown materials. This data is represented in a collection of single-phase X-ray powder diffraction patterns for the three most intense D values in the form of tables of interplanar spacings (D), relative intensities (I/Io), mineral name and chemical formulae
The XRD technique takes a sample of the material and places a powdered sample in a holder, then the sample is illuminated with x-rays of a fixed wave-length and the intensity of the reflected radiation is recorded using a goniometer. This data is then analyzed for the reflection angle to calculate the inter-atomic spacing (D value in Angstrom units - 10-8 cm). The intensity(I) is measured to discriminate (using I ratios) the various D spacings and the results are compared to this table to identify possible matches. Note: 2 theta (Θ) angle calculated from the Bragg Equation, 2 Θ = 2(arcsin(n λ/(2d)) where n=1
For more information about this technique, see X-Ray Analysis of a Solid or take an internet course at Birkbeck College On-line Courses. Many thanks to Frederic Biret for these data.
[ 1 ]
D1 Å (2θ) |
I1 %) |
D2 Å (2θ) |
I2 (%) |
D3 Å (2θ) |
I3 (%) |
Mineral | Formula |
11.040(8.00) | 200 | 5.668(15.62) | 15.840(5.57) | Caoxite | Ca(C2O4)·3(H2O) | ||
11.042(8.00) | 200 | 3.682(24.15) | 180 | 4.778(18.55) | 180 | Tarkianite | (Cu,Fe)(Re,Mo)4S8 |
11.060(7.99) | 200 | 5.524(16.03) | 140 | 8.456(10.45) | 120 | Rokuhnite | Fe++Cl2·(H2O) |
11.080(7.97) | 200 | 20.760(4.25) | 67 | 13.180(6.70) | 66 | Hartite | C20H34 |
11.080(7.97) | 200 | 5.540(15.98) | 180 | 9.060(9.75) | 180 | Andalusite | Al2SiO5 = Al[6]Al[5]OSiO4 |
11.100(7.96) | 200 | 15.480(5.70) | 180 | 13.760(6.42) | 160 | Roubaultite | Cu2(UO2)3(CO3)2O2(OH)2·4(H2O) |
11.106(7.95) | 200 | 5.516(16.05) | 104 | 5.570(15.90) | 104 | Belloite | Cu(OH)Cl |
11.180(7.90) | 200 | 6.840(12.93) | 144 | 7.124(12.41) | 132 | IMA2009-040 | (NH4)2Mg5Fe3+3Al(SO4)12·18H2O |
11.180(7.90) | 200 | 5.080(17.44) | 160 | 6.160(14.37) | 160 | Bandylite | CuB(OH)4Cl |
11.180(7.90) | 200 | 5.848(15.14) | 80 | 10.980(8.05) | 80 | Nickelbischofite | NiCl2·6(H2O) |
11.200(7.89) | 200 | 29.800(2.96) | 200 | 6.598(13.41) | 160 | Szymanskiite | Hg+16(Ni,Mg)6(H3O)8(CO3)12·3(H2O) |
11.230(7.87) | 200 | 5.184(17.09) | 180 | 7.102(12.45) | 160 | Tunisite | NaCa2Al4(CO3)4(OH)8Cl |
11.300(7.82) | 200 | 14.592(6.05) | 150 | 11.852(7.45) | 140 | Ceruleite | Cu2Al7(AsO4)4(OH)13·12(H2O) |
11.320(7.80) | 200 | 4.800(18.47) | 160 | 5.140(17.24) | 140 | Botallackite | Cu2Cl(OH)3 |
11.320(7.80) | 200 | 5.920(14.95) | 190 | 7.000(12.64) | 130 | Orpheite | PbAl3(PO4,SO4)2(OH)6 (?) |
11.320(7.80) | 200 | 5.180(17.10) | 90 | 10.040(8.80) | 90 | Magnesiocarpholite | MgAl2Si2O6(OH)4 |
11.338(7.79) | 200 | 5.654(15.66) | 188 | 7.134(12.40) | 180 | Kanonaite | (Mn+++,Al)AlSiO5 |
11.340(7.79) | 200 | 15.860(5.57) | 200 | 26.000(3.40) | 200 | Andersonite | Na2Ca(UO2)(CO3)3·6(H2O) |
11.360(7.78) | 200 | 3.150(28.31) | 120 | 5.520(16.04) | 120 | Yushkinite | V1-xS·n(Mg,Al)(OH)2 |
11.380(7.76) | 200 | 6.852(12.91) | 160 | 5.984(14.79) | 150 | Ahlfeldite | (Ni,Co)SeO3·2(H2O) |
11.400(7.75) | 200 | 7.080(12.49) | 182 | 5.720(15.48) | 156 | Acetamide | CO(CH3)(NH2) |
11.400(7.75) | 200 | 6.770(13.07) | 32 | 3.380(26.35) | 28 | Dawsonite | NaAl(CO3)(OH)2 |
11.400(7.75) | 200 | 12.700(6.95) | 190 | 6.560(13.49) | 60 | Kladnoite | C6H4(CO)2NH |
11.420(7.74) | 200 | 22.800(3.87) | 200 | 6.740(13.12) | 120 | Valleriite | 4(Fe,Cu)S·3(Mg,Al)(OH)2 |
11.440(7.72) | 200 | 14.560(6.07) | 180 | 6.488(13.64) | 120 | Faheyite | (Mn,Mg)Fe+++2Be2(PO4)4·6(H2O) |
11.460(7.71) | 200 | 10.160(8.70) | 140 | 5.240(16.91) | 100 | Carpholite | MnAl2Si2O6(OH)4 |
11.460(7.71) | 200 | 5.380(16.46) | 160 | 16.220(5.44) | 160 | Orschallite | Ca3(SO3)2SO4·12(H2O) |
11.460(7.71) | 200 | 4.928(17.99) | 162 | 5.460(16.22) | 78 | Kapellasite | Cu3Zn(OH)6Cl2 |
[ 1 ]